Convex and isometric domination of (weak) dominating pair graphs
نویسندگان
چکیده
A set D of vertices in a graph G is a dominating set if every vertex of G, which is not in D, has a neighbor in D. A set of vertices D in G is convex (respectively, isometric), if all vertices in all shortest paths (respectively, all vertices in one of the shortest paths) between any two vertices in D lie in D. The problem of finding a minimum convex dominating (respectively, isometric dominating) set is considered in this paper from algorithmic point of view. For the class of weak dominating pair graphs (i.e., the graphs that contain a dominating pair, which is a pair of vertices x, y ∈ V (G) such that vertices of any path between x and y form a dominating set), we present an efficient algorithm that finds a minimum isometric dominating set of such a graph. On the other hand, we prove that even if one restricts to weak dominating pair graphs that are also chordal graphs, the problem of deciding whether there exists a convex dominating set bounded by a given arbitrary positive integer is NP-complete. By further restricting the class of graphs to chordal dominating pair graphs (i.e., the chordal graphs in which every connected induced subgraph has a dominating pair) we are able to find a polynomial time algorithm that determines the minimum size of a convex dominating set of such a graph.
منابع مشابه
Weak signed Roman k-domination in graphs
Let $kge 1$ be an integer, and let $G$ be a finite and simple graph with vertex set $V(G)$.A weak signed Roman $k$-dominating function (WSRkDF) on a graph $G$ is a function$f:V(G)rightarrow{-1,1,2}$ satisfying the conditions that $sum_{xin N[v]}f(x)ge k$ for eachvertex $vin V(G)$, where $N[v]$ is the closed neighborhood of $v$. The weight of a WSRkDF $f$ is$w(f)=sum_{vin V(G)}f(v)$. The weak si...
متن کاملAcyclic Weak Convex Domination in Graphs
In a graph G = (V, E), a set D ⊂ V is a weak convex dominating(WCD) set if each vertex of V-D is adjacent to at least one vertex in D and d < D > (u, v) = d G (u, v) for any two vertices u, v in D. A weak convex dominating set D, whose induced graph < D > has no cycle is called acyclic weak convex dominating(AWCD) set. The domination number γ ac (G) is the smallest order of a acyclic weak conve...
متن کاملWeak signed Roman domination in graphs
A {em weak signed Roman dominating function} (WSRDF) of a graph $G$ with vertex set $V(G)$ is defined as afunction $f:V(G)rightarrow{-1,1,2}$ having the property that $sum_{xin N[v]}f(x)ge 1$ for each $vin V(G)$, where $N[v]$ is theclosed neighborhood of $v$. The weight of a WSRDF is the sum of its function values over all vertices.The weak signed Roman domination number of $G...
متن کاملThe convex domination subdivision number of a graph
Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...
متن کاملOn independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1704.08484 شماره
صفحات -
تاریخ انتشار 2017